Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
 Bad Actor Identification
Increasing Yard and Shop Efficiency
 Electronic Inspection Reporting
 Mechanical Defect Reporting
 Component Tracking
Improving Inspection Quality
 Detector Based Inspection
Asset Health Strategic Initiative (AHSI) Description

- **Multi-year strategy** for improvement of asset health driven by yearly industry **targets and measures** for improvement,
- Solves problems with rolling stock that need a **network view** of asset information and industry coordination,
- Applies **information technology** solutions and processes.
Asset Health Strategic Initiative Contributors

- Safety and Operations Management Committee (SOMC)
 - Technical Services Working Committee (TSWC)
 - Asset Health Strategy Committee (AHSC)
 - All 7 Class 1 Railroads
 - 4 Associate/Affiliate Members
 - TTX
 - Amtrak
 - AHSC Staff Members
 - AAR
 - Railinc
 - TTCI
- Additional Committees Engaged
 - EHMC, AEI, GIS, ARB, BSC, etc.
Asset Health Strategy Committee (AHSC)

<table>
<thead>
<tr>
<th>Member</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rex Beck</td>
<td>UP, Chair</td>
</tr>
<tr>
<td>Pat Ameen</td>
<td>Amsted</td>
</tr>
<tr>
<td>Derek Maier</td>
<td>Amtrak</td>
</tr>
<tr>
<td>Steve Harris</td>
<td>BNSF</td>
</tr>
<tr>
<td>Darrell Iler</td>
<td>CN</td>
</tr>
<tr>
<td>Rodney Campbell</td>
<td>CP</td>
</tr>
<tr>
<td>Charlie King</td>
<td>CSX</td>
</tr>
<tr>
<td>Tom Mordock</td>
<td>GATX</td>
</tr>
<tr>
<td>Ryan Miller</td>
<td>KCS</td>
</tr>
<tr>
<td>Jamie Williams</td>
<td>NS, Vice-Chair</td>
</tr>
<tr>
<td>Mike Kelly</td>
<td>TTX</td>
</tr>
<tr>
<td>Rick Koenig</td>
<td>UTLX</td>
</tr>
<tr>
<td>Rick Grossman</td>
<td>Wells Fargo Rail</td>
</tr>
</tbody>
</table>

Committee Focus:

- Continue to provide leadership to the work of the Asset Health Strategic Initiative.

- Coordinate work of a number of technical committees and champion prioritized initiatives that improve industry safety, reduce variability, streamline mechanical operations, and reduce or eliminate non-value added activities.

- Interface with FRA in promoting regulatory change.
AHSC 2016 SOMC Deliverables

1. Refine AHSI performance goals and measure results for prioritized metrics in each of the three AHSI target categories.

2. Execute the multi-year AHSI projects to build upon the established foundation and move forward on “detector based brake effectiveness” and “bad-actor identification.”

3. Continue to refine the AHSI roadmap to confirm or revise priorities for future year activities.

4. Continue to review and champion targeted asset health-related opportunities that bridge across other AAR technical committees and other groups.
AHSI Project work is providing value

<table>
<thead>
<tr>
<th>Capability Developed</th>
<th>Initial Release</th>
<th>Benefit</th>
<th>Value Begins</th>
<th>Status September 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of “Bad Actor” equipment through network level analysis</td>
<td>2014</td>
<td>Reduction of Line of Road Failures in the ‘UDE No Cause Found’ category</td>
<td>2014</td>
<td>More than 2,000 Line of Road Failures prevented to-date via MA-0146 study. Rule-making proposals being advanced.</td>
</tr>
<tr>
<td>Improved and enhanced health information available to Class I Railroads and car owners</td>
<td>2014</td>
<td>More detailed equipment level analysis based on available health indicators</td>
<td>2014</td>
<td>Line of Road Data Failure data summaries established for UDE-no-cause-found and air hose separation events.</td>
</tr>
<tr>
<td>Sharing of Class I, IA, and Extended Haul inspection data</td>
<td>2015</td>
<td>Reduction in duplicate or non-required inspections between railroads</td>
<td>2015</td>
<td>5 railroads sending electronic mechanical conducted Class 1 Air Slips; Work is underway to leverage electronic inspections.</td>
</tr>
<tr>
<td>Determination of Brake Effectiveness for a Consist (via wheel temperature detector data)</td>
<td>2014</td>
<td>Higher quality inspection data and future reduction of manual Class IA inspections</td>
<td>2015</td>
<td>FRA Public Hearing recently conducted to review proposed waiver request.</td>
</tr>
</tbody>
</table>
Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
 Bad Actor Identification
Increasing Yard and Shop Efficiency
 Electronic Inspection Reporting
 Mechanical Defect Reporting
 Component Tracking
Improving Inspection Quality
 Detector Based Inspection

Rolling Stock Asset Health

BAD ACTOR IDENTIFICATION
Approximately 921 line-of-road failures have been reduced to date in 2016. Focused effort will be required to achieve the reduction target of ~2,800.

MA-0146 (UDE-No Cause Found) results through August 8, 2016

<table>
<thead>
<tr>
<th>Test</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Total</th>
<th>% Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Brake Related Issue?</td>
<td>267</td>
<td>202</td>
<td>4</td>
<td>393</td>
<td>57%</td>
</tr>
<tr>
<td>Failed SCABT?</td>
<td>100</td>
<td>353</td>
<td>20</td>
<td>377</td>
<td>22%</td>
</tr>
<tr>
<td>Either Issue?</td>
<td>307</td>
<td>166</td>
<td>0</td>
<td>396</td>
<td>65%</td>
</tr>
</tbody>
</table>

Current Opportunities:
- Worksheets from complete repairs remain outstanding.
- 944 potential bad actors are on the MA as of 8/17/16

Caveats, Assumptions, and Notes:
- Only includes data contributed by Class I railroads and participating PCO’s.
- Only includes equipment with a score of 5 or higher
- Only includes equipment added after our initial add on 7/7/15
- Results subject to change as data quality and analysis methodology improve.

- Data quality varies between carriers, which may result in under-reporting of incidents.
- Likely understated due to a lack of automated reporting by all carriers.
- Lack of consistency of reporting impacts accuracy of metric.
Early results show that equipment intercepted and repaired has a lower re-incidence rate (5.23%) than equipment not intercepted at all (18.05%).

<table>
<thead>
<tr>
<th>WS Result</th>
<th>No</th>
<th>Yes</th>
<th>Repeat Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues Found</td>
<td>290</td>
<td>16</td>
<td>5.23%</td>
</tr>
<tr>
<td>No Issues Noted</td>
<td>159</td>
<td>7</td>
<td>4.22%</td>
</tr>
<tr>
<td>Non-Intercepted</td>
<td>277</td>
<td>61</td>
<td>18.05%</td>
</tr>
</tbody>
</table>

Caveats, Assumptions, and Notes:
- Current sample size is too small to come to any definitive conclusions
- As more “clean” data comes in we will be able to better test our hypothesis.
- Multiple failures on the same trip may only be counted once.
- Equipment must fail with at least 2 distinct groups be labeled a “repeat”
- Data quality varies between carriers, which may result in under-reporting of incidents.
- Likely understated due to a lack of automated reporting by all carriers.
- Lack of consistency of reporting impacts accuracy of metric.
- Results subject to change as data quality and analysis methodology improve.
LORF-NCF Data Summary Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Date</td>
<td>09-07-2014 01:00</td>
</tr>
<tr>
<td>Last Event Date</td>
<td>03-30-2015 09:34</td>
</tr>
<tr>
<td>Count of DS Creators</td>
<td>3</td>
</tr>
<tr>
<td>Score</td>
<td>2.0</td>
</tr>
<tr>
<td>Raw Count</td>
<td>2</td>
</tr>
<tr>
<td>Train Count</td>
<td>2</td>
</tr>
<tr>
<td>Road Count</td>
<td>1</td>
</tr>
<tr>
<td>Automated Group Count</td>
<td>2</td>
</tr>
<tr>
<td>Manual Group Count</td>
<td>0</td>
</tr>
<tr>
<td>Loaded Count</td>
<td>2</td>
</tr>
<tr>
<td>Empty Count</td>
<td>0</td>
</tr>
<tr>
<td>Manual Count</td>
<td>0</td>
</tr>
<tr>
<td>Automated Count</td>
<td>2</td>
</tr>
<tr>
<td>Last Event Timestamp</td>
<td>03-30-2015 09:34</td>
</tr>
<tr>
<td>Last Event Load/Empty Indicator</td>
<td>L</td>
</tr>
<tr>
<td>Last Event Manual/Download Indicator</td>
<td>AUTOMATED</td>
</tr>
<tr>
<td>2nd to Last Event Timestamp</td>
<td>03-27-2015 18:00</td>
</tr>
<tr>
<td>2nd to Last Event Load/Empty Indicator</td>
<td>L</td>
</tr>
<tr>
<td>2nd to Last Event Manual/Download Indicator</td>
<td>AUTOMATED</td>
</tr>
</tbody>
</table>
Line of Road Failure (LORF), Progression to Industry Rule

Initiate

<table>
<thead>
<tr>
<th>Identify and Gather Data</th>
<th>Identify and Prioritize Problems to Address</th>
<th>Standardize and Stabilize Data (quality and quantity)</th>
</tr>
</thead>
</table>

Pilot / Validate

<table>
<thead>
<tr>
<th>Execute Pilot Process to Address Identified Problems</th>
<th>Analyze Results, Adjust, Repeat</th>
<th>Review with Appropriate Subject Matter Experts / Committees</th>
</tr>
</thead>
</table>

Identify Method for Industry Implementation

<table>
<thead>
<tr>
<th>Determine Methods to Share Information (e.g., Data Summaries)</th>
<th>As applicable: Propose Rule Changes, Provide CBA, Communicate Timelines, Update Training, Establish Alerts, etc.</th>
<th>Monitor Results</th>
</tr>
</thead>
</table>
Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
Bad Actor Identification
Increasing Yard and Shop Efficiency
Electronic Inspection Reporting
Mechanical Defect Reporting
Component Tracking
Improving Inspection Quality
Detector Based Inspection

Rolling Stock Asset Health

ELECTRONIC INSPECTION REPORTING
Electronic Class 1 Air Slips have been developed by the AIR/E-Train TAG.

Opportunity:
- Generate an electronic version of the Class 1 air slip for each train,
- Capture and store a record of each Class 1 inspection at the car level, and
- Submit a record of each car receiving the inspection to Railinc.

Benefits:
- Enables replacement air slips to be generated on demand when a paper slip is lost,
- Facilitates sharing of 215 inspection with Canadian roads at interchange,
- Supports methodology for calculating brake effectiveness at the car level,
- Provides increased local visibility to inspection performance.

Actions / Next Steps:
- Railroads finalizing changes to capture, submit, and retrieve inspections conducted by mechanical personnel,
- Railroads adjusting processes to capture Class 1 inspections that are conducted by Transportation personnel,
- Evaluation underway to determine waiver opportunities to extend mileage on Class 1 and Extended Haul inspections based on electronic records.
Reported Electronic Inspections in 2016

Industry Class 1/ Class 1A / Ext Haul Monthly Inspections
Data Submitted to Railinc since February 2016

Caveats, Assumptions, and Notes:
- Only includes inspection in 2016
- Results subject to change as data quality and analysis methodology improve.
- Data quality varies between carriers.
- Likely understated due to a lack of automated reporting by all carriers.
- Lack of consistency of reporting impacts accuracy of metric.
Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
 Bad Actor Identification
Increasing Yard and Shop Efficiency
 Electronic Inspection Reporting
 Mechanical Defect Reporting
 Component Tracking
Improving Inspection Quality
 Detector Based Inspection

Rolling Stock Asset Health

MECHANICAL DEFECT REPORTING
Objectives of the Mechanical Defect Initiative

- **Current:**
 - Wheel, Axle, Bearing, and Casting data is collected from faxed and manually input online forms.

- **Future:**
 - Increase the reporting compliance of MD reports by enabling automated reporting from proprietary systems.
 - Increase the quality of the data by validating input.
 - Provide Metrics to measure completeness and quality.

Need for more complete, accurate, and timely reporting for derailment prevention.
Automated MD reporting will increase the quality and completeness of the MD data (MD-115 September 2016)
MD-115 Communications Plan* helps stakeholders understand and benefit from new reporting capabilities

- Railinc User Interface and Web Services deployed to production on September 22nd
 - Industry shop systems can begin integrating with the MD-115 Web Service
- Plan is in place to transition from legacy TTCI web site
 - Proposed cutover from TTCI to Railinc MD reporting interface July 1, 2017
 - Advertise change on current TTCI site
 - Update Field Manual & MSRP’s
- Instruction and assistance on setting up SSO ID’s

* AHSC/WABL members are requested to drive adoption of MD reporting
MD Forms Moving to www.Railinc.com

- Current:
 - MD-115 – Wheels

- 2017 - 2018:
 - MD-11 – Roller Bearings
 - MD-12 – Axle
 - MD-500 – Side Frame and Bolsters
Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
 Bad Actor Identification
Increasing Yard and Shop Efficiency
 Electronic Inspection Reporting
 Mechanical Defect Reporting
 Component Tracking
Improving Inspection Quality
 Detector Based Inspection
Objectives of the Component Tracking Initiative

1. **Visibility** into rail equipment health and performance
2. **Increase the safety** of the rail industry by supporting recall
3. **Reduce the cost** of a recall by enabling targeted recalls and efficient industry response strategies
Component Registry Timelines

Current Date: October 2016

- Wheelsets
- Castings
- Brake Valves
- Slack Adjusters

Optional Registration & Association
OEM Registration
Association
CRB Reject

© 2016 Railinc Corp. All rights reserved.
Serialized Component Coverage
August 15, 2016

- Wheelsets: 42% CID, 58% other, 7.1M wheelsets
- Sideframes: 12% CID, 88% other, 7.1M sideframes
- Bolsters: 12% CID, 88% other, 3.5M bolsters
- Couplers: 16% CID, 84% other, 3.4M couplers
- Emergency Valves: 4% CID, 96% other, 1.7M emergency valves
- Service Valves: 4% CID, 96% other, 1.7M service valves
Asset Health Strategy Committee
Reducing Mechanical Service Interruptions
 Bad Actor Identification
Increasing Yard and Shop Efficiency
 Electronic Inspection Reporting
 Mechanical Defect Reporting
 Component Tracking
Improving Inspection Quality
 Detector Based Inspection

Rolling Stock Asset Health

DETECTOR BASED INSPECTION
Inspection Quality Reusable Process (The “U”)
Inspection Quality Platform Work Timeline

2013-2014
- Standard Data Format
- Detector Registration
- Reads Repository
- Cold Wheel Temperature Scenario
 - Bearing/Wheel Graph Tool
 - Cold Wheel Data Summary
- AEI Merging Analysis

2015
- AEI Data Summary
 - Full Production
 - Wheel Profile – Pilot
 - WILD/THD Scenario – Pilot
 - HBD Data Sharing – Pilot
 - Hot Wheel Scenario
 - Data Calculations
 - ABD – Message format

2016
- Wheel Profile – Full Production
- HBD Sharing – Full Production
- WILD & THD – Full Production
- OGD – Standards & Design
 (RPSWC Outcome)
- ABD – Standards & Design
 (RPSWC Outcome)

2017
- Optical Geometry
 - Pilot (RPSWC Outcome)
- Acoustic Bearing
 - Pilot (RPSWC Outcome)
- Machine Vision, On Board, other detectors
- Pilot

2018+
- Cold Wheel Scenario – Full Production
- Brake Health Indicator/Score
- Mileage Integration
- Air Brake Test Integration
- AEI Bad Tag Scenario – Pilot
 - Bad Tag Identification & Data Summary
 - AEI Merging Capability Improvement
- Hot Wheel Scenario Analysis

© 2016 Railinc Corp. All rights reserved.
AEI Bad Tag Identification

AEI Bad Tag Identification Benefits
- Identify AEI Tag issues that can cause defect misidentification
- Identify data quality issues through business rules

Industry Data Request:
- AEI data in Wayside Message Format (xml) for co-located defect detectors to support the industry merge process and detector quality monitoring
- S9203 data for identifying AEI tag issues and AEI committee metrics

Railinc Value Additions:
- Consistent AEI business rule validations across the industry to eliminate corrupt data and create a clean, mergeable file
- Umler data validation and flagging

Data Output for Consumption:
- AEI Bad Tag data summary
- Industry alert supporting cause for attention (future)
AEI Bad Tag Data Summary

- Distinct Equipment: 1,274,419
- DS Created: 284,714
- DS Open: 127,793
- DS Closed: 156,921
New EHMC Alerts and Notifications

- Progressive Plan for new Line of Road Failure (LORF) industry alert
- Process will apply to new AHSI technologies
 - Investigation
 - Data Summary
 - Window Open Alerts
 - Mandatory Alerts
- Future: New alert levels; composite data summaries; composite rules
Rolling Stock Asset Health

Questions?

MARTS
Omaha, NE - October 2016